| 4. | In a purely capacitive circuit with an applied sine wave voltage, the voltage | | |--|--|---| | | A. must be DC.B. will lead the current. | C. will be in phase with the current. D. will lag the current. | | 5. | 5. When one vibrating body sets a second body into vibration at the same natural frequency it's called | | | (| A. sympathy. B. sympathetic vibration. | C. natural sympathy.D. mutual sympathy. | | 6. | In a certain tuned series RLC circuit $X_L = X_C$. The impedance of that circuit is equal to | | | | A. $X_L - X_C$.
B. $X_L + X_C$. | C. R.
D. R ² . Charte Pg 15 | | 7. | As far as the generator is concerned, in a series-replaced by | resonant LC circuit (with no resistor), L and C can be | | | A. a single resistor with a value equal to L × C. B. the value of C. C. the value of L. D. a straight piece of wire. | | | 8. | Which of the following is not true? At resonance in | n a series RLC circuit, | | | A. the voltage across R, the voltage across C, an B. the current through all of the components (R, C. $V_C = V_L$. D. the phase angle of a generated AC voltage across C, and C. $V_C = V_L$. | | | 9. | The bandwidth of a series-tuned circuit is that ran of the maximum voltage. | ge of frequencies between where the voltage is | | (| A. 75% B. 70.7% | C. 50%
D. 30% | | 10. |). You can lower the resonant frequency of a series-tuned RLC circuit by | | | Control of the Contro | A. decreasing C.B. increasing L. | C. increasing R. 3 4 D. decreasing R. | | 11. | When a capacitance is given as 6.3 x 10 ⁻⁶ farads, it can be written as | | | | A. 6.3 millifarads.B. 6.3 microfarads. | C. 6.3 nanofarads.D. 6.3 picofarads. | | 12. | The reciprocal of circuit Q is called | | | | A. CQ. B. reciprocal QR. | C. dissipation factor. D. RQ. | | 13. | In a parallel RLC circuit, increasing the resistance gohms will | e across the LC combination from 10 ohms to 10 me- | | | A. increase the value of Q.B. decrease the value of Q. | C. not affect the value of Q.D. increase the resonant frequency. | | | | • |